六年级奥数常考题:乘法原理练习题
导语:青年是学习智慧的时期,中年是付诸实践的时期。下面是小编为大家整理的,数学练习题。希望对大家有所帮助,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!
小学奥数练习题【例一】
在小于10000的自然数中,含有数字1的数有多少个?
解 不妨将1至9999的自然数均看作四位数,凡位数不到四位的自然数在前面补0.使之成为四位数.
先求不含数字1的这样的'四位数共有几个,即有0,2,3,4,5,6,7,8,9这九个数字所组成的四位数的个数.由于每一位都可有9种写法,所以,根据乘法原理,由这九个数字组成的四位数个数为
9×9×9×9=6561,
其中包括了一个0000,它不是自然数,所以比10000小的不含数字1的自然数的个数是6560,于是,小于10000且含有数字1的自然数共有9999-6560=3439个.
小学奥数练习题【例二】
求正整数1400的正因数的个数.
解 因为任何一个正整数的任何一个正因数(除1外)都是这个数的一些质因数的积,因此,我们先把1400分解成质因数的连乘积
1400=23527
所以这个数的任何一个正因数都是由2,5,7中的n个相乘而得到(有的可重复).于是取1400的一个正因数,这件事情是分如下三个步骤完成的:
(1)取23的正因数是20,21,22,33,共3+1种;
(2)取52的正因数是50,51,52,共2+1种;
(3)取7的正因数是70,71,共1+1种.
所以1400的正因数个数为
(3+1)×(2+1)×(1+1)=24.
说明 利用本题的方法,可得如下结果:
若pi是质数,ai是正整数(i=1,2,…,r),则数
的不同的正因数的个数是
(a1+1)(a2+1)…(ar+1).