高中数学《空间几何体》知识点总结

时间:2024-04-18 20:37:41
高中数学《空间几何体》知识点总结

高中数学《空间几何体》知识点总结

空间几何体的结构

1、棱柱

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱ABCDE?A'B'C'D'E' 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2、棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

'''''表示:用各顶点字母,如五棱锥P?ABCDE

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相

似,其相似比等于顶点到截面距离与高的比的平方。

3、棱台

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如四棱台ABCD—A'B'C'D'

几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的'顶点

4、圆柱

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5、圆锥

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6、圆台

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

球体

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

※空间几何体的结构特征:面(侧面、上底面、下底面)、棱、顶点、轴

1.2空间几何体的三视图和直观图

1、中心投影与平行投影

中心投影:把光由一点向外散射形成的投影叫做中心投影。 平行投影:在一束平行光照射下形成的投影叫做平行投影。

2、三视图

正视图:从前往后

侧视图:从左往右

俯视图:从上往下

画三视图的原则:长对齐、高对齐、宽相等

3、直观图:斜二测画法

斜二测画法的步骤:

(1).平行于坐标轴的线依然平行于坐标轴;

(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;

(3).画法要写好。

用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱

(4)成图

1.3空间几何体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线)

S直棱柱侧面积ch

S正棱台侧面积?1(c1c2)h'2 S圆柱侧1SSrl2rh正棱锥侧面积2ch' 圆锥侧面积 S圆台侧面积(rR)l S圆锥表rrlS圆柱表2rrlS圆台表r2rlRlR2

(3)柱体、锥体、台体的体积公式

V柱Sh V圆柱Sh2rh

1V台(S'S)h3 1122V圆台(S'S)h(rrRR)h33

43R3= 1V锥Sh3 1V圆锥

r2h3

(4)球体的表面积和体积公式:V球

《高中数学《空间几何体》知识点总结.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式